Picking and certifying random primes

Cagdas Calik, René Peralta, Meltem Turan ${ }^{1}$
Information Technology Laboratory, NIST

Abstract

Cool multcomp stuff.

1 A lemma

Denote by f_{n} any function on variables x_{1}, \ldots, x_{n}. Let $C_{\wedge}(f)$ denote the multiplicative complexity of f.

Claim 1: Let $n>=1$. Let f_{n} be a non-constant function. For all f_{n-1} the following holds

$$
C_{\wedge}\left(x_{n+1} f_{n}+f_{n-1}\right)=1+C_{\wedge}\left(f_{n}+f_{n-1}\right)
$$

Proof:
Clearly

$$
C_{\wedge}\left(x_{n+1} f_{n}+f_{n-1}\right)<=1+C_{\wedge}\left(f_{n}+f_{n-1}\right)
$$

so it is enough to prove

$$
C_{\wedge}\left(x_{n+1} f_{n}+f_{n-1}\right)>C_{\wedge}\left(f_{n}+f_{n-1}\right)
$$

Suppose, for a contradiction, that there exists a circuit D, with at most $C_{\wedge}\left(f_{n}+f_{n-1}\right)$ AND gates, that computes $f_{n+1}=x_{n+1} f_{n}+f_{n-1}$.

Assume, w.l.o.g. that D is in layered normal form.
Case 1, x_{n+1} is an input to an AND gate in D. Setting $x_{n+1}=1$, kills at least one AND gate in D . The resulting circuit must compute f_{n}, but it has fewer than $C_{\wedge}\left(f_{n}+f_{n-1}\right)$ AND gates, contradiction.

Case 2, a linear function $x_{n+1}+L_{n}$ is an input to an AND gate (L_{n} not a constant). Then setting $x_{n+1}=L_{n}$ kills a least one AND gate in D . The resulting circuit must compute $f_{n}+f_{n-1}$ because, in the space of functions on variables x_{1}, \ldots, x_{n}, setting $x_{n+1}=L_{n}$ is not a restriction. But this circuit has fewer than $C_{\wedge}\left(f_{n}+f_{n-1}\right)$ AND gates, contradiction.

